The error message– INFO - 0 % of model's snps used
– can typically be traced to inconsistencies between variant IDs in prediction models and input GWAS files. Our GTEx v8 mashr and elastic net models are defined in hg38. For GWAS defined in hg19, we recommend first processing the GWAS with our harmonization tool (tutorial)
Here, we focus on harmonization issues for prediction models and summary statistics in the same build. By harmonization, we mean that the same SNP can be identified with different names in the prediction model and GWAS, so we want to ensure they match. Our prediction models identify SNPs by their RSID and “varID”, a naming format with chromosome, position, allele, and build information. For example, the variant ‘rs12551220’ has varID ‘chr9_137032730_G_A_b38’. In our example, we focus on a GWAS that does not provide RSIDs for variants, so we requires some processing in order to run SPrediXcan.
The raw GWAS file:
zless /Users/sabrinami/Desktop/psychencode_test_data/clozuk_pgc2.meta.sumstats.txt.gz | head
SNP Freq.A1 CHR BP A1 A2 OR SE P
10:100968448:T:AA 0.3519 10 100968448 t aa 1.0024 0.01 0.812
10:101574552:A:ATG 0.4493 10 101574552 a atg 0.989060.0097 0.2585
10:10222597:AT:A 0 10 10222597 a at 0.9997 0.01 0.9777
Our prediction models follow the format:
sqlite> SELECT * FROM weights LIMIT 5;
ENSG00000000457|rs6703487|chr1_169550749_C_T_b37|C|T|0.0010487355157559
ENSG00000000457|rs9332476|chr1_169556756_A_G_b37|A|G|0.0037017916840068
ENSG00000000457|rs2142759|chr1_169618820_G_A_b37|G|A|0.00806408251476846
The variants identified in the SNP
column of the GWAS file match neither the rsid
or varID
columns of the model. If we run SPrediXcan without harmonizing, we get the INFO - 0 % of model's snps used
error message:
python3 $METAXCAN/SPrediXcan.py --gwas_file $DATA/clozuk_pgc2.meta.sumstats.out.txt.gz \
> --model_db_path $MODEL/psychencode_model/psychencode.db \
> --covariance $MODEL/psychencode_model/psychencode.txt.gz \
> --or_column OR \
> --pvalue_column P \
> --snp_column SNP \
> --non_effect_allele_column A2 \
> --effect_allele_column A1 \
> --throw \
> --output_file $RESULTS/clozuk_pgc2_imputeformat.csv
INFO - Processing GWAS command line parameters
INFO - Building beta for /Users/sabrinami/Desktop/psychencode_test_data/clozuk_pgc2.meta.sumstats.out.txt.gz and /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode.db
INFO - Reading input gwas with special handling: /Users/sabrinami/Desktop/psychencode_test_data/clozuk_pgc2.meta.sumstats.out.txt.gz
INFO - Processing input gwas
INFO - Aligning GWAS to models
INFO - Trimming output
INFO - Successfully parsed input gwas in 18.136219276 seconds
INFO - Started metaxcan process
INFO - Loading model from: /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode.db
INFO - Loading covariance data from: /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode.txt.gz
INFO - Processing loaded gwas
INFO - Started metaxcan association
INFO - 0 % of model's snps used
INFO - Sucessfully processed metaxcan association in 132.015579446 seconds
To harmonize, we add a varID
column in the GWAS file with the same format of as the model using information in the CHR
, BP
, A1
, A2
columns. The modified GWAS looks like:
zless /Users/sabrinami/Desktop/psychencode_test_data/clozuk_pgc2.meta.sumstats.out.txt.gz | head
SNP Freq.A1 CHR BP A1 A2 OR SE P varID
10:100968448:T:AA 0.3519 10 100968448 T AA 1.0024 0.01 0.812 chr10_100968448_T_AA_b37
10:101574552:A:ATG 0.4493 10 101574552 A ATG 0.989060.0097 0.2585 chr10_101574552_A_ATG_b37
10:10222597:AT:A 0 10 10222597 A AT 0.9997 0.01 0.9777 chr10_10222597_A_AT_b37
We also change our SPrediXcan parameters to indicate the GWAS SNP names follow the varID
format, with the argument --model_db_snp_key varID
. It runs correctly because it messages INFO - 63 % of model's snps used
:
python3 $METAXCAN/SPrediXcan.py --gwas_file $DATA/clozuk_pgc2.meta.sumstats.out.txt.gz \
> --model_db_path $MODEL/psychencode_model/psychencode.db \
> --covariance $MODEL/psychencode_model/psychencode_varID.txt.gz \
> --keep_non_rsid --model_db_snp_key varID \
> --or_column OR \
> --pvalue_column P \
> --snp_column varID \
> --non_effect_allele_column A2 \
> --effect_allele_column A1 \
> --throw \
> --output_file $RESULTS/clozuk_pgc2_psychencode.csv
INFO - Processing GWAS command line parameters
INFO - Building beta for /Users/sabrinami/Desktop/psychencode_test_data/clozuk_pgc2.meta.sumstats.out.txt.gz and /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode.db
INFO - Reading input gwas with special handling: /Users/sabrinami/Desktop/psychencode_test_data/clozuk_pgc2.meta.sumstats.out.txt.gz
INFO - Processing input gwas
INFO - Aligning GWAS to models
INFO - Trimming output
INFO - Successfully parsed input gwas in 22.284876615 seconds
INFO - Started metaxcan process
INFO - Loading model from: /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode.db
INFO - Loading covariance data from: /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode_varID.txt.gz
INFO - Processing loaded gwas
INFO - Started metaxcan association
INFO - 10 % of model's snps found so far in the gwas study
INFO - 20 % of model's snps found so far in the gwas study
INFO - 30 % of model's snps found so far in the gwas study
INFO - 40 % of model's snps found so far in the gwas study
INFO - 50 % of model's snps found so far in the gwas study
INFO - 60 % of model's snps found so far in the gwas study
INFO - 63 % of model's snps used
INFO - Sucessfully processed metaxcan association in 153.879826246 seconds
If we still see the INFO - 0 % of model's snps used
message, there may still be inconsistencies between the GWAS and covariance file.
In the example, SPrediXcan runs using the varID
format names from both the GWAS file and model. However, the covariance file may still identify variants by their RSID:
zless /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode.txt.gz | head
GENE RSID1 RSID2 VALUE
ENSG00000003249 rs140580708 rs140580708 0.013030848604677675
ENSG00000003249 rs140580708 rs164739 -0.008913106189505495
ENSG00000003249 rs140580708 rs1991508 -0.0017680061881014297
Creating a new covariance file with varID
format variant names replacing the RSID1
and RSID2
columns should fix the error. The prediction model file provides a dictionary to update IDs. We have example code to do so.
The following covariance file (with the same column names) gives the correct output:
zless /Users/sabrinami/Github/psychencode/models/psychencode_model/psychencode_varID.txt.gz | head
GENE RSID1 RSID2 VALUE
ENSG00000003249 chr16_89594100_C_G_b37 chr16_89594100_C_G_b37 0.0130308486046777
ENSG00000003249 chr16_89594100_C_G_b37 chr16_89667699_C_G_b37 -0.0089131061895055
ENSG00000003249 chr16_89594100_C_G_b37 chr16_89672155_C_T_b37 -0.00176800618810143